For a graph whose vertices are points in $\mathbb R^d$, consider the closed balls with diameters induced by its edges. The graph is called a Tverberg graph if these closed balls intersect. A max-sum tree of a finite point set $X \subset \mathbb R^d$ is a tree with vertex set $X$ that maximizes the sum of Euclidean distances of its edges among all trees with vertex set $X$. Similarly, a max-sum matching of an even set $X \subset \mathbb R^d$ is a perfect matching of $X$ maximizing the sum of Euclidean distances between the matched points among all perfect matchings of $X$. We prove that a max-sum tree of any finite point set in $\mathbb R^d$ is a Tverberg graph, which generalizes a recent result of Abu-Affash et al., who established this claim in the plane. Additionally, we provide a new proof of a theorem by Bereg et al., which states that a max-sum matching of any even point set in the plane is a Tverberg graph. Moreover, we proved a slightly stronger version of this theorem.


翻译:对于一张其顶点位于 $\mathbb R^d$ 中的点的图,考虑其边所诱导的直径为相应边权的闭球体。若这些闭球体相交,我们称该图为 Tverberg 图。给定一个有限点集 $X \subset \mathbb R^d$,其 max-sum 树是一棵顶点集为 $X$ 并使得其边的欧几里德距离和最大的树。同样地,对于任意偶数点集 $X \subset \mathbb R^d$,其 max-sum 匹配是一个 $X$ 的完美匹配,使得其匹配点之间的欧几里德距离和最大。我们证明了任意有限点集的 max-sum 树都是 Tverberg 图,从而推广了近期 Abu-Affash 等人在平面上证明的结论。此外,我们对 Bereg 等人的定理进行了新的证明,该定理指出平面上任意偶数点集的 max-sum 匹配都是 Tverberg 图。此外,我们还证明了该定理的一个略微更强的版本。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2021新书】高阶网络,150页pdf,Higher-Order Networks
专知会员服务
87+阅读 · 2021年11月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月5日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员