In this work, we consider the task of faithfully simulating a distributed quantum measurement and function computation, and demonstrate a new achievable information-theoretic rate-region. For this, we develop the technique of randomly generating structured POVMs using algebraic codes. To overcome the challenges caused by algebraic construction, we develop a Pruning Trace inequality which is a tighter version of the known operator Markov inequality. In addition, we develop a covering lemma which is independent of the operator Chernoff inequality so as to be applicable for pairwise-independent codewords. We demonstrate rate gains for this problem over traditional coding schemes. Combining these techniques, we provide a multi-party distributed faithful simulation and function computation protocol.
翻译:在这项工作中,我们考虑忠实模拟分布量量度测量和函数计算的任务,并展示一个新的可实现的信息理论率区域。 为此,我们开发了利用代数代码随机生成结构化的POVMs的技术。为了克服代数构造造成的挑战,我们开发了“预留路径”不平等,这是已知Markov经营者不平等的更严格版本。此外,我们开发了一种独立于操作者Chernoff不平等的覆盖 Lemma, 以便适用于双向独立的编码词。我们展示了这个问题相对于传统编码方法的速率收益。结合这些技术,我们提供了多党分布的忠实模拟和函数计算协议。