Algorithmic discrepancy theory seeks efficient algorithms to find those two-colorings of a set that minimize a given measure of coloring imbalance in the set, its {\it discrepancy}. The {\it Euclidean discrepancy} problem and the problem of balancing covariates in randomized trials have efficient randomized algorithms based on the Gram-Schmidt walk (GSW). We frame these problems as quantum Ising models, for which variational quantum algorithms (VQA) are particularly useful. Simulating an example of covariate-balancing on an IBM quantum simulator, we find that the variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA) yield results comparable to the GSW algorithm.


翻译:算法差异理论寻求高效的算法,以找到能够最大限度地减少一组中色不平衡的两种颜色,即其 ~it 差异} 。 ~Euclidean 差异} 问题和随机试验中平衡共差的问题基于Gram-Schmidt 步行( GSW) 的高效随机算法。 我们将这些问题描述为量子Ising 模型, 其变量算法(VQA)特别有用 。 模拟IBM 量子模拟器的共变平衡示例, 我们发现变量量量单和量子优化算法(QAOA)产生与GSW 算法相似的结果。

1
下载
关闭预览

相关内容

耶鲁大学《分布式系统理论》笔记,491页pdf
专知会员服务
45+阅读 · 2020年7月29日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月11日
Arxiv
0+阅读 · 2021年5月8日
Arxiv
0+阅读 · 2021年5月5日
Arxiv
0+阅读 · 2021年5月4日
Arxiv
0+阅读 · 2021年5月3日
VIP会员
相关资讯
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员