Bilevel optimization has recently attracted growing interests due to its wide applications in modern machine learning problems. Although recent studies have characterized the convergence rate for several such popular algorithms, it is still unclear how much further these convergence rates can be improved. In this paper, we address this fundamental question from two perspectives. First, we provide the first-known lower complexity bounds of $\widetilde{\Omega}(\frac{1}{\sqrt{\mu_x}\mu_y})$ and $\widetilde \Omega\big(\frac{1}{\sqrt{\epsilon}}\min\{\frac{1}{\mu_y},\frac{1}{\sqrt{\epsilon^{3}}}\}\big)$ respectively for strongly-convex-strongly-convex and convex-strongly-convex bilevel optimizations. Second, we propose an accelerated bilevel optimizer named AccBiO, whose complexity improves the existing upper bounds orderwisely under strongly-convex-strongly-convex, convex-strongly-convex and nonconvex-strongly-convex geometries. We further show that AccBiO achieves the optimal results (i.e., the upper and lower bounds match) under certain conditions up to logarithmic factors. Interestingly, our lower bounds under both geometries are larger than the corresponding optimal complexities of minimax optimization, establishing that bilevel optimization is provably more challenging than minimax optimization. We finally discuss the extensions and applications of our results to other problems such as minimax optimization.


翻译:最近,由于在现代机器学习问题中的广泛应用,双层优化最近吸引了越来越多的兴趣。尽管最近的研究对若干这种流行算法的趋同率作了特征的描述,但仍然不清楚这些趋同率还能进一步改进多少。在本文件中,我们从两个角度分别解决这个基本问题。首先,我们提供了第一个已知的低复杂度的 $- 宽度=Omega}(\ frac{1\ sqrt}1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ x\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员