We propose and compare methods for the analysis of extreme events in complex systems governed by PDEs that involve random parameters, in situations where we are interested in quantifying the probability that a scalar function of the system's solution is above a threshold. If the threshold is large, this probability is small and its accurate estimation is challenging. To tackle this difficulty, we blend theoretical results from large deviation theory (LDT) with numerical tools from PDE-constrained optimization. Our methods first compute parameters that minimize the LDT-rate function over the set of parameters leading to extreme events, using adjoint methods to compute the gradient of this rate function. The minimizers give information about the mechanism of the extreme events as well as estimates of their probability. We then propose a series of methods to refine these estimates, either via importance sampling or geometric approximation of the extreme event sets. Results are formulated for general parameter distributions and detailed expressions are provided when Gaussian distributions. We give theoretical and numerical arguments showing that the performance of our methods is insensitive to the extremeness of the events we are interested in. We illustrate the application of our approach to quantify the probability of extreme tsunami events on shore. Tsunamis are typically caused by a sudden, unpredictable change of the ocean floor elevation during an earthquake. We model this change as a random process, which takes into account the underlying physics. We use the one-dimensional shallow water equation to model tsunamis numerically. In the context of this example, we present a comparison of our methods for extreme event probability estimation, and find which type of ocean floor elevation change leads to the largest tsunamis on shore.


翻译:我们提出并比较分析由PDE所管理的复杂系统中的极端事件的方法,这些极端事件涉及随机参数,如果我们有兴趣量化系统解决方案的轨迹功能高于阈值的概率。如果阈值大,这种概率小,其准确估计也具有挑战性。为了解决这一困难,我们将大型偏差理论(LDT)的理论结果与PDE所限制的优化的数字工具混合起来。我们的方法首先计算参数,这些参数将LDT-比率函数与导致极端事件的一组参数相比最小化,使用联合方法来计算这一比率函数的梯度。最小化者提供了极端事件类型机制及其概率估计的信息。然后我们提出了一系列方法来改进这些估计数,要么是临界值,要么是极端事件各组的重要性抽样,要么是几何近的近地点的近地点。我们为一般参数分布提供了详细表达结果。我们给出了理论和数字模型,表明我们方法的性能与我们感兴趣的事件的极端性变化不相适应。我们用一种方法来量化极端事件类型的轨迹,我们用一种方法来量化极端事件类型机制的轨迹机制,在海面上发生的最深层地震的升的概率,我们用一个模型来计算。我们用来测量的海平面的地平面的概率。我们用来计算。我们用来计算。我们用来测量的底的地平面的地平面的地震的概率的概率。我们用来计算。我们用一个对海平面的概率的概率的概率。我们用来计算。我们用来计算。我们用来计算。我们用来计算。我们用来用来计算出在海平面地震的底的概率。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
6+阅读 · 2017年7月17日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员