Expensive bounding-box annotations have limited the development of object detection task. Thus, it is necessary to focus on more challenging task of few-shot object detection. It requires the detector to recognize objects of novel classes with only a few training samples. Nowadays, many existing popular methods based on meta-learning have achieved promising performance, such as Meta R-CNN series. However, only a single category of support data is used as the attention to guide the detecting of query images each time. Their relevance to each other remains unexploited. Moreover, a lot of recent works treat the support data and query images as independent branch without considering the relationship between them. To address this issue, we propose a dynamic relevance learning model, which utilizes the relationship between all support images and Region of Interest (RoI) on the query images to construct a dynamic graph convolutional network (GCN). By adjusting the prediction distribution of the base detector using the output of this GCN, the proposed model can guide the detector to improve the class representation implicitly. Comprehensive experiments have been conducted on Pascal VOC and MS-COCO dataset. The proposed model achieves the best overall performance, which shows its effectiveness of learning more generalized features. Our code is available at https://github.com/liuweijie19980216/DRL-for-FSOD.


翻译:因此,有必要侧重于更具有挑战性的微小物体探测任务,要求探测器识别新课程对象,只有少量培训样本。如今,许多基于元学习的现有流行方法,如Meta R-CNN系列,都取得了有希望的性能。然而,只使用单一类别的支持数据来指导每次探测查询图像的注意,这些数据对彼此的相关性仍未得到利用。此外,许多近期工作将支持数据和查询图像作为独立分支处理,而不考虑它们之间的关系。为了解决这个问题,我们提出了一个动态相关性学习模型,利用所有支持图像与查询图像中感兴趣的区域(ROI)之间的关系,以构建动态图象革命网络(GCN)。通过使用GCN输出调整基础探测器的预测分布,拟议的模型可以指导探测器暗中改善课堂代表性。在Pascal VOC和MS-COCO数据集方面进行了全面实验。拟议模型将实现最佳的总体性性能,显示其可普及性能。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
已删除
将门创投
7+阅读 · 2017年7月11日
Arxiv
21+阅读 · 2020年10月11日
OD-GCN: Object Detection by Knowledge Graph with GCN
Arxiv
4+阅读 · 2019年9月30日
Arxiv
7+阅读 · 2018年12月5日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
6+阅读 · 2018年3月19日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
已删除
将门创投
7+阅读 · 2017年7月11日
相关论文
Arxiv
21+阅读 · 2020年10月11日
OD-GCN: Object Detection by Knowledge Graph with GCN
Arxiv
4+阅读 · 2019年9月30日
Arxiv
7+阅读 · 2018年12月5日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
6+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员