Classical object detection methods only extract the objects' image features via CNN, lack of utilizing the relationship among objects in the same image. In this article, we introduce the graph convolutional networks (GCN) into the object detection field and propose a new framework called OD-GCN (object detection with graph convolutional network). It utilizes the category relationship to improve the detection precision. We set up a knowledge graph to reflect the co-exist relationships among objects. GCN plays the role of post-processing to adjust the output of base object detection models, so it is a flexible framework that any pre-trained object detection models can be used as the base model. In experiments, we try several popular base detection models. OD-GCN always improve mAP by 1-5pp on COCO dataset. In addition, visualized analysis reveals the benchmark improvement is quite reasonable in human's opinion.
翻译:古老的物体探测方法只能通过CNN提取物体的图像特征,没有利用同一图像中物体之间的关系。在本篇文章中,我们向物体探测场引入图形变异网络(GCN),并提出称为OD-GCN(与图形变异网络的物体探测)的新框架。它利用类别关系来提高探测精确度。我们设置了一个知识图以反映物体之间的共存关系。GCN发挥后处理作用,调整基本物体探测模型的输出,因此这是一个灵活的框架,任何经过预先训练的物体探测模型都可以用作基础模型。在实验中,我们尝试几种流行的基础探测模型。OD-GCN总是通过1-5pp在CO数据集上改进MAP。此外,可视化分析显示基准改进在人类看来相当合理。