As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with multiple modalities like images. However, current MMEA algorithms all adopt KG-level modality fusion strategies but ignore modality differences among individual entities, hurting the robustness to potential noise involved in modalities (e.g., unidentifiable images and relations). In this paper we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, to dynamically predict the mutual correlation coefficients among modalities for instance-level feature fusion. A modal-aware hard entity replay strategy is also proposed for addressing vague entity details. Extensive experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has limited parameters, optimistic speed, and good interpretability. Our code will be available soon.
翻译:作为实体调整的一个重要变体(EA),多模式实体调整(MMEA)旨在发现不同知识图形(KGs)的相同实体(KGs)与图像等多种模式相同,然而,目前的MMEA算法都采用了KG级混合模式战略,但忽略了个别实体之间的模式差异,损害了对模式(例如无法识别的图像和关系)中潜在噪音的稳健性;在本文件中,我们介绍了MEAAAEx(元模式混合的多模式的多模式实体调整变压器)方法,以动态预测各种模式(例如集成特征)之间的相互关联系数。还提出了多功能硬实体重现战略,以解决模糊的实体细节。广泛的实验结果显示,我们的模型不仅在多个培训情景上实现了SOTA绩效,包括监督、未监督、迭接和低资源,而且还有有限的参数、乐观速度和良好的解释性。我们的代码很快将可用。