项目名称: 基于金属/磁性氧化物薄膜的表面等离子磁光增强机理及传感器件研究

项目编号: No.61475031

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 毕磊

作者单位: 电子科技大学

项目金额: 82万元

中文摘要: 磁光表面等离子体共振(MOSPR)器件是能应用于未来化学生物传感和非互易光学领域的新型微纳光学器件。目前用于MOSPR传感器件的磁性金属薄膜,由于其较高的光学损耗,制约了传感器灵敏度的进一步提高,而SPR增强磁光效应的机制也尚待澄清。本项目以低损耗磁性氧化物构建金属/磁性氧化物材料表面等离子共振结构,系统研究SPR对磁性氧化物磁光效应增强机理,提出新型电介质磁光材料表面等离子共振(DMOSPR)传感器件。拟采用第一性原理计算和电磁波有限元仿真相结合的方法, 澄清SPR与磁性氧化物材料相互作用的物理过程,建立SPR增强磁光效应的理论模型;并仿真DMOSPR器件结构,采用PLD等物理气相沉积方法制备DMOSPR传感器,实现高灵敏度折射率传感。本项目的开展将为澄清SPR对磁性氧化物材料磁光增强作用机制,发新型高灵敏度DMOSPR传感器件奠定理论和实验基础。

中文关键词: 表面等离子体共振;磁光材料;微纳光学

英文摘要: MOSPR devices are novel micro and nanophotonic devices which has the potential to be used for future chemical/biomedical sensing, and nonreciprocal photonic applications. Nowadays, MOSPR sensing devices are mostly based on magnetic metals. The high optical loss of magnetic metal films limits further improvement of device sensitivities, meanwhile the mechanisms of SPR enhanced MO effects still awaits clarification. In this project, we propose to used low loss magnetic oxides to construct metal/magentic oxide thin film structures. The mechanism of SPR enhanced magneto-optical properties in magnetic oxides will be systematically studied. Novel high sensitivity DMOSPR index sensors will be simulated and fabricated. To clarify the mechanism of SPR enhanced magneto-optical properties in magnetic oxides, we propose to combine density functional theory calculation and finite element simulation methods to build theoretical models both from solid state physics and from electromagnetics points of view. We also propose to simulate and fabricate DMOSPR index sensor structures and to realize low LOD of index sensing.This project will help clarify the mechanism of SPR enhanced magneto-optical properties in oxides, and also develop a new class of high sensitivity DMOSPR index sensors based on metal and mangeto-optical oxide thin films.

英文关键词: Surface Plasmon Resonance;Magneto-optical Materials;Micro and Nanophotonics

成为VIP会员查看完整内容
0

相关内容

自动驾驶中可解释AI的综述和未来研究方向
专知会员服务
68+阅读 · 2022年1月10日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
隐私计算应用白皮书, 54页pdf
专知会员服务
176+阅读 · 2021年12月18日
数据中心传感器技术应用 白皮书
专知会员服务
42+阅读 · 2021年11月13日
专知会员服务
43+阅读 · 2021年9月7日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
专知会员服务
32+阅读 · 2021年5月7日
DigiTimes:下一代iPhone的芯片将基于“4nm”工艺
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
12+阅读 · 2019年4月9日
小贴士
相关VIP内容
自动驾驶中可解释AI的综述和未来研究方向
专知会员服务
68+阅读 · 2022年1月10日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
隐私计算应用白皮书, 54页pdf
专知会员服务
176+阅读 · 2021年12月18日
数据中心传感器技术应用 白皮书
专知会员服务
42+阅读 · 2021年11月13日
专知会员服务
43+阅读 · 2021年9月7日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
专知会员服务
32+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员