We present the first distributed optimization algorithm with lazy communication for collaborative geometric estimation, the backbone of modern collaborative simultaneous localization and mapping (SLAM) and structure-from-motion (SfM) applications. Our method allows agents to cooperatively reconstruct a shared geometric model on a central server by fusing individual observations, but without the need to transmit potentially sensitive information about the agents themselves (such as their locations). Furthermore, to alleviate the burden of communication during iterative optimization, we design a set of communication triggering conditions that enable agents to selectively upload a targeted subset of local information that is useful to global optimization. Our approach thus achieves significant communication reduction with minimal impact on optimization performance. As our main theoretical contribution, we prove that our method converges to first-order critical points with a global sublinear convergence rate. Numerical evaluations on bundle adjustment problems from collaborative SLAM and SfM datasets show that our method performs competitively against existing distributed techniques, while achieving up to 78% total communication reduction.
翻译:我们展示了第一个分布式优化算法,为协作性几何估计提供懒惰的通信,是现代协作性同步本地化和绘图(SLAM)以及结构自动(SfM)应用程序的骨干。我们的方法允许代理商合作重建中央服务器上的共享几何模型,方法是对个体观测进行阻断,但不必传输有关代理商本身的潜在敏感信息(如它们的位置)。此外,为了减轻迭接优化期间的通信负担,我们设计了一套通信触发条件,使代理商能够选择性地上传对全球优化有用的特定本地信息。因此,我们的方法实现了显著的通信减少,对优化性能的影响最小。作为我们的主要理论贡献,我们证明我们的方法与一阶临界点和全球次线性趋同率相融合。关于合作性 SLM 和 SfM 数据集的组合调整问题的数值评估表明,我们的方法比现有分布技术具有竞争力,同时达到78%的通信总量减少。