Robustness is a property of system analyses, namely monotonic maps from the complete lattice of subsets of a (system's state) space to the two-point lattice. The definition of robustness requires the space to be a metric space. Robust analyses cannot discriminate between a subset of the metric space and its closure, therefore one can restrict to the complete lattice of closed subsets. When the metric space is compact, the complete lattice of closed subsets ordered by reverse inclusion is w-continuous and robust analyses are exactly the Scott continuous maps. Thus, one can also ask whether a robust analysis is computable (with respect to a countable base). The main result of this paper establishes a relation between robustness and Scott continuity, when the metric space is not compact. The key idea is to replace the metric space with a compact Hausdorff space, and relate robustness and Scott continuity by an adjunction between the complete lattice of closed subsets of the metric space and the w-continuous lattice of closed subsets of the compact Hausdorff space. We demonstrate the applicability of this result with several examples involving Banach spaces.
翻译:强力是系统分析的属性,即从一个(系统状态)空间子集的完整平方图到两点宽平方图的完整平方图的单调图。 稳健性的定义要求空间是一个计量空间。 强健性分析不能区分一个计量空间的子集与封闭空间的封闭, 因此可以限制封闭子集的完整平方。 当公制空间是紧凑的, 由反向包容所命令的封闭子集的完整平方图是反复的, 稳健性分析恰恰是斯科特连续的地图。 因此, 人们也可以问, 强健性分析是否可比较( 相对于可计量的基础) 。 本文的主要结果确立了强健性和斯科特连续性之间的关系, 当公制空间不是紧凑的时。 关键的想法是用一个紧凑的豪斯多夫空间来取代矩阵空间的完整平方, 将坚固性和斯科特的连续性联系起来, 紧固性与紧固性分析完全平方是斯科特连续的斯科特的斯科特。 因此, 人们也可以问, 强性的分析是否可比较( 就可计量的基础基础而言 ) 。 本文的主要结果确立了强性和Scott- 和Sctxxxxxxxxxxxxxxx空间的连续的连续的连续的连续的连续性。 我们展示了该结果, 我们用几个的空空方块空间的可适用性。