The phenomenon that stochastic gradient descent (SGD) favors flat minima has played a critical role in understanding the implicit regularization of SGD. In this paper, we provide an explanation of this striking phenomenon by relating the particular noise structure of SGD to its \emph{linear stability} (Wu et al., 2018). Specifically, we consider training over-parameterized models with square loss. We prove that if a global minimum $\theta^*$ is linearly stable for SGD, then it must satisfy $\|H(\theta^*)\|_F\leq O(\sqrt{B}/\eta)$, where $\|H(\theta^*)\|_F, B,\eta$ denote the Frobenius norm of Hessian at $\theta^*$, batch size, and learning rate, respectively. Otherwise, SGD will escape from that minimum \emph{exponentially} fast. Hence, for minima accessible to SGD, the sharpness -- as measured by the Frobenius norm of the Hessian -- is bounded \emph{independently} of the model size and sample size. The key to obtaining these results is exploiting the particular structure of SGD noise: The noise concentrates in sharp directions of local landscape and the magnitude is proportional to loss value. This alignment property of SGD noise provably holds for linear networks and random feature models (RFMs), and is empirically verified for nonlinear networks. Moreover, the validity and practical relevance of our theoretical findings are also justified by extensive experiments on CIFAR-10 dataset.


翻译:在理解 SGD 隐含的规范化方面, SGD 偏向于 平坦的梯度下降 (SGD) 现象在理解 SGD 隐含的规范化方面发挥了关键的作用。 在本文中,我们通过将 SGD 的特殊噪音结构与其 emph{线性稳定性(Wu 等人, 2018) (Wu 等人, 2018) 联系起来来解释这个惊人的现象。 具体地说, 我们考虑用平方损失来训练超度参数模型。 否则, SGD 将很快地从最低 emph{Explential 稳定起来。 因此, 它必须满足 $H(theta})\\\\\leq(leqrt{B}/\geeta) $ ($hhh(theta{theta{line sliminalityal) Oralityality reality reality reality real) 。 在Hesaltimemberal ral ral deal deal deal ladeal dal dal ex lade. Srbly Srmexal ex ex ex exal deal deal deal ex ex ex exmal exmet exmal ex exmal ex ex ex ex ex ex ex ex exlev ex ex ex ex ex ex extraluttal extral. S. S. Sral exml ex ex ex ex ex ex ex ex exm ex ex ex ex extra extra extra extra extra extra ex exl exl exl ex ex ex ex ex ex ex ex ex ex ex ex exmlbal exlal ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月22日
Arxiv
0+阅读 · 2022年11月22日
Arxiv
0+阅读 · 2022年11月20日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员