We construct and analyze approximation rates of deep operator networks (ONets) between infinite-dimensional spaces that emulate with an exponential rate of convergence the coefficient-to-solution map of elliptic second-order partial differential equations. In particular, we consider problems set in $d$-dimensional periodic domains, $d=1, 2, \dots$, and with analytic right-hand sides and coefficients. Our analysis covers linear, elliptic second order divergence-form PDEs as, e.g., diffusion-reaction problems, parametric diffusion equations, and elliptic systems such as linear isotropic elastostatics in heterogeneous materials. We leverage the exponential convergence of spectral collocation methods for boundary value problems whose solutions are analytic. In the present periodic and analytic setting, this follows from classical elliptic regularity. Within the ONet branch and trunk construction of [Chen and Chen, 1993] and of [Lu et al., 2021], we show the existence of deep ONets which emulate the coefficient-to-solution map to a desired accuracy in the $H^1$ norm, uniformly over the coefficient set. We prove that the neural networks in the ONet have size $\mathcal{O}(\left|\log(\varepsilon)\right|^\kappa)$, where $\varepsilon>0$ is the approximation accuracy, for some $\kappa>0$ depending on the physical space dimension.
翻译:我们构建和分析远方操作者网络的近似率( ONets) 。 我们的分析包括线性、 椭圆二等分级差式PDE, 如扩散- 反应问题, 参数扩散方程式, 以及等离子体材料线性等离子异差度等离子异差系统。 我们利用光谱共解方法的指数性趋同方法来解决其解决方案具有分析性的边界值问题。 在目前的周期性和分析性环境中,这是经典的椭圆常态。 我们的分析包括线性、 椭圆二等分级PDE, 如扩散- 反应问题, 参数扩散方程式, 以及等异质材料线性等离子系统。 我们利用光谱共解方法的指数性趋同方法, 解决其解决方案具有分析性的边界值问题。 在当前周期性和分析性环境里, 这是典型的椭圆常态常态。 在[ Cen and Chen, (Lu and al., 2021) 中, 我们展示了深度欧正正基值网络比数- 。