In the bi-objective branch-and-bound literature, a key ingredient is objective branching, i.e. to create smaller and disjoint sub-problems in the objective space, obtained from the partial dominance of the lower bound set by the upper bound set. When considering three or more objective functions, however, applying objective branching becomes more complex, and its benefit has so far been unclear. In this paper, we investigate several ingredients which allow to better exploit objective branching in a multi-objective setting. We extend the idea of probing to multiple objectives, enhance it in several ways, and show that when coupled with objective branching, it results in significant speed-ups in terms of CPU times. We also investigate cut generation based on the objective branching constraints. Besides, we generalize the best-bound idea for node selection to multiple objectives and we show that the proposed rules outperform the, in the multi-objective literature, commonly employed depth-first and breadth-first strategies. We also analyze problem specific branching rules. We test the proposed ideas on available benchmark instances for three problem classes with three and four objectives, namely the capacitated facility location problem, the uncapacitated facility location problem, and the knapsack problem. Our enhanced multi-objective branch-and-bound algorithm outperforms the best existing branch-and-bound based approach and is the first to obtain competitive and even slightly better results than a state-of-the-art objective space search method on a subset of the problem classes.


翻译:在双目标分支和受约束的文献中,一个关键要素是客观分支,即在客观空间中产生较小和脱节的子问题,这是由受上界约束的下层部分主导产生的。然而,在考虑三个或更客观的功能时,适用客观分支变得更加复杂,其益处迄今还不清楚。在本文件中,我们调查了在多目标环境中更好地利用客观分支的若干要素。我们将探索的理念扩大到多个目标,以几种方式加强它,并表明在与客观分支相结合的情况下,它导致在CPU时间方面大大加快搜索速度。我们还根据客观分支限制对裁量的生成进行了调查。此外,我们将最佳的无偏差选择理念推广到多个目标,我们表明拟议的规则在多目标文献中超越了通常采用的深度第一和宽度第一战略。我们还分析了特定问题分支规则。我们测试了三个问题类别现有基准实例的拟议想法,三个类别有3个和4个目标,即,即:最稳定、更稳定、更稳定、更稳定、更稳定、更稳定、更稳定、更稳定、更稳定、更稳定、更不稳定的现有设施系统问题。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员