The maximum entropy principle advocates to evaluate events' probabilities using a distribution that maximizes entropy among those that satisfy certain expectations' constraints. Such principle can be generalized for arbitrary decision problems where it corresponds to minimax approaches. This paper establishes a framework for supervised classification based on the generalized maximum entropy principle that leads to minimax risk classifiers (MRCs). We develop learning techniques that determine MRCs for general entropy functions and provide performance guarantees by means of convex optimization. In addition, we describe the relationship of the presented techniques with existing classification methods, and quantify MRCs performance in comparison with the proposed bounds and conventional methods.


翻译:最大限度的昆虫原则主张利用在符合某些期望的限制因素中最大限度地增加酶的分布来评估事件的概率; 这项原则可以适用于任意决定问题,只要符合小型方法; 本文根据普遍的最高酶原则,为监督分类建立一个框架,以导致小型危险分类者(MRCs); 我们开发学习技术,确定一般酶功能的MRCs,并通过onvex优化提供性能保障; 此外,我们描述介绍的技术与现有分类方法的关系,并将MRCs的表现与拟议的界限和常规方法相比较,量化。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
24+阅读 · 2021年3月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2021年10月11日
Arxiv
24+阅读 · 2021年3月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
9+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员