Aggregated relational data (ARD), formed from "How many X's do you know?" questions, is a powerful tool for learning important network characteristics with incomplete network data. Compared to traditional survey methods, ARD is attractive as it does not require a sample from the target population and does not ask respondents to self-reveal their own status. This is helpful for studying hard-to-reach populations like female sex workers who may be hesitant to reveal their status. From December 2008 to February 2009, the Kiev International Institute of Sociology (KIIS) collected ARD from 10,866 respondents to estimate the size of HIV-related groups in Ukraine. To analyze this data, we propose a new ARD model which incorporates respondent and group covariates in a regression framework and includes a bias term that is correlated between groups. We also introduce a new scaling procedure utilizing the correlation structure to further reduce biases. The resulting size estimates of those most-at-risk of HIV infection can improve the HIV response efficiency in Ukraine. Additionally, the proposed model allows us to better understand two network features without the full network data: 1. What characteristics affect who respondents know, and 2. How is knowing someone from one group related to knowing people from other groups. These features can allow researchers to better recruit marginalized individuals into the prevention and treatment programs. Our proposed model and several existing NSUM models are implemented in the networkscaleup R package.


翻译:综合关系数据 (ARD) 是学习重要网络特征和网络数据不完整的重要网络特征的有力工具。 与传统的调查方法相比, ARD具有吸引力, 因为它不需要来自目标人群的样本, 也不要求被调查者自我解读自己的身份。 这有助于研究难以接触的人口, 如可能不愿透露自己身份的女性性工作者。 从2008年12月至2009年2月, 基辅国际社会学研究所(KIIS)收集了来自10, 866个应答者的ARD, 以估计乌克兰艾滋病毒相关群体的规模。 为了分析这一数据,我们提出了一个新的ARD模式, 将答复者和群体变量纳入回归框架中, 并包含一个群体之间相互关联的偏差术语。 我们还引入了一个新的规模化程序, 利用相关结构进一步减少偏见。 由此对最易感染艾滋病毒者的规模估计可以提高乌克兰的艾滋病毒应对效率。 此外, 拟议的模型使我们能够更好地了解两个网络特征, 而没有完整的网络数据: 1. 哪些特征会影响答卷者, 和 2. 如何了解一个群体从一个群体到另一个群体中学习了我们所推荐的州际网络。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月21日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员