项目名称: 凝聚超冷量子气体中弱光孤子的形成与传播特性研究

项目编号: No.11504272

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 朱成杰

作者单位: 同济大学

项目金额: 20万元

中文摘要: 由于其独特的物理特性及潜在的应用前景,近年来凝聚超冷量子气体的研究引起了人们的极大关注。本项目将开展凝聚超冷量子气体中弱光孤子形成与传播特性的研究,内容包括:(1) 根据奇异摄动理论,建立研究光与凝聚超冷量子气体相互作用的理论方法,系统地计算由光子和物质波相互作用引起的各阶非线性光学极化率;(2) 基于超辐射散射模型,研究凝聚超冷量子气体中弱光孤子的形成与传播,通过将凝聚体的结构因子引入散射场的Maxwell方程,解释凝聚超冷量子气体中散射场产生的物理机制;(3) 研究量子干涉效应对弱光孤子传播特性的影响,并探讨在凝聚超冷量子气体中实现高维超慢时空孤子的可能性。该项目的研究对于揭示凝聚超冷量子气体中的新奇非线性与量子效应有重要意义,并且在广义相对论、流体力学现象的类比方面有潜在的应用前景。

中文关键词: 光孤子;相位匹配;非线性光学效应;克尔效应

英文摘要: Due to their unique physical properties and potential application prospect, in recent years great attention has been paid to the study of condensed ultracold quantum gases. In this project, we shall make the investigation on the properties of formation and propagation of weak-light soliton in condensed ultrcold quantum gases, which include: (1) Develop a theoretical method based on singular perturbation theory to study the interaction between light field and the condensed ultracold quantum gases and calculate every-order optical susceptibilities contributed by the interaction between photon and matter wave in a systematic way. (2) Study the formation and propagation of weak-light soliton in the condensed ultracold quantum gases based on the superradiant scattering model and explain the physical mechanism of the generation of the scattering field by introducing the structure-factor into the Maxwell equation of the scattering field. (3) Study the propagation of weak-light solitons with the effects of quantum interference and explore the possibility of realizing high-dimension spatial-temporal solitons with ultraslow group velocity in condensed ultracold quantum gases. The implementation of this project is of importance for the finding of new nonlinear and quantum effects of condensed ultracold quantum gases and has potential applications in the analogy of phenomenon of the general relativity and the fluid mechanics.

英文关键词: optical soliton;phase matching;nonlinear optical effect;Kerr effect

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
专知会员服务
125+阅读 · 2021年8月25日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
19+阅读 · 2021年5月30日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
可对药物分子进行表征的几何深度学习
机器之心
0+阅读 · 2022年2月6日
量子启发的多模态融合模型
PaperWeekly
3+阅读 · 2022年1月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
2021年全球量子信息发展报告, 32页pdf
专知
0+阅读 · 2021年5月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
65+阅读 · 2021年6月18日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员