Querying graph data with low latency is an important requirement in application domains such as social networks and knowledge graphs. Graph queries perform multiple hops between vertices. When data is partitioned and stored across multiple servers, queries executing at one server often need to hop to vertices stored by another server. Such distributed traversals represent a performance bottleneck for low-latency queries. To reduce query latency, one can replicate remote data to make distributed traversals unnecessary, but replication is expensive and should be minimized. In this paper, we introduce the problem of finding data replication schemes that satisfy arbitrary user-defined query latency constraints with minimal replication cost. We propose a novel workload model to express data access causality, propose a family of heuristics, and introduce non-trivial sufficient conditions for their correctness. Our evaluation on two representative benchmarks show that our algorithms enable fine-tuning query latency with data replication and can find sweet spots in the latency/replication design space.
翻译:在社交网络和知识图解等应用领域,查询低纬度的图表数据是一项重要要求。 图表查询在顶端之间有多重跳跃。 当数据被分割并存储在多个服务器上时, 在一个服务器上执行的查询往往需要跳到另一个服务器存储的顶端。 这种分布式的跨度代表低纬度查询的性能瓶颈。 为了降低查询延迟度, 人们可以复制远程数据, 使分布式穿梭没有必要, 但复制成本很高, 应该最小化 。 在本文中, 我们引入了寻找数据复制计划的问题, 以最小的复制成本满足任意用户定义的查询延度限制 。 我们提出了一个新的工作量模型, 以表达数据存取因果关系, 提议一个超度组合, 并引入非三重的充足条件来纠正这些差异 。 我们对两个具有代表性的基准的评估显示, 我们的算法能够对数据复制的宽度进行微调, 并且可以在宽度/ 复制设计空间中找到甜点 。