In this paper, we propose an efficient simulation method based on adaptive importance sampling, which can automatically find the optimal proposal within the Gaussian family based on previous samples, to evaluate the probability of bit error rate (BER) or word error rate (WER). These two measures, which involve high-dimensional black-box integration and rare-event sampling, can characterize the performance of coded modulation. We further integrate the quasi-Monte Carlo method within our framework to improve the convergence speed. The proposed importance sampling algorithm is demonstrated to have much higher efficiency than the standard Monte Carlo method in the AWGN scenario.
翻译:在本文中,我们建议一种基于适应重要性抽样的有效模拟方法,该方法可以自动在高斯家族内找到基于以往抽样的最佳建议,以评估位误率(BER)或字误率(WER)的概率,这两项措施涉及高维黑盒集成和稀有活动抽样,可以说明编码调制的性能,我们进一步将准蒙特卡洛方法纳入我们的框架,以提高汇合速度,拟议的重要取样算法比标准蒙特卡洛方法(AWGN情景)的效率要高得多。</s>