We consider the problem of the detection of brain hemorrhages from three dimensional (3D) electrical impedance tomography (EIT) measurements. This is a condition requiring urgent treatment for which EIT might provide a portable and quick diagnosis. We employ two neural network architectures -- a fully connected and a convolutional one -- for the classification of hemorrhagic and ischemic strokes. The networks are trained on a dataset with $40\,000$ samples of synthetic electrode measurements generated with the complete electrode model on realistic heads with a 3-layer structure. We consider changes in head anatomy and layers, electrode position, measurement noise and conductivity values. We then test the networks on several datasets of unseen EIT data, with more complex stroke modeling (different shapes and volumes), higher levels of noise and different amounts of electrode misplacement. On most test datasets we achieve $\geq 90\%$ average accuracy with fully connected neural networks, while the convolutional ones display an average accuracy $\geq 80\%$. Despite the use of simple neural network architectures, the results obtained are very promising and motivate the applications of EIT-based classification methods on real phantoms and ultimately on human patients.
翻译:我们考虑从三维(3D)电阻断层(EIT)测量中检测脑出血的问题。这是一个需要紧急治疗的条件,经济转型期可以提供便携和快速诊断。我们使用两种神经网络结构 -- -- 一个完全连接的和进化的 -- -- 来对出血和白化中风进行分类。这些网络在一套数据集上接受培训,该数据集有40美元的合成电极测量样本,这些样本是用三层结构、现实头部和三层结构的完整电极模型生成的。我们考虑头部解剖和层、电极位置、测量噪音和导力值的变化。我们然后用若干可视经济转型期数据的数据集测试这些网络,这些数据集有更复杂的中风模型(形状和体积不同)、更高的噪音和不同程度的电极变换位。在大多数测试数据集中,我们与完全连接的神经网络平均达到90美元,而革命模型显示平均精度为80美元。尽管使用了简单的神经网络结构结构的简单精度、电极定位、最终结果都具有极感官的动力。