The paper considers the problem of velocity model acquisition for a complex media based on boundary measurements. The acoustic model is used to describe the media. We used an open-source dataset of velocity distributions to compare the presented results with the previous works directly. Forward modeling is performed using the grid-characteristic numerical method. The inverse problem is solved using deep convolutional neural networks. Modifications for a baseline UNet architecture are proposed to improve both structural similarity index measure quantitative correspondence of the velocity profiles with the ground truth. We evaluate our enhancements and demonstrate the statistical significance of the results.
翻译:本文考虑了基于边界测量的复杂介质速度模型的获取问题。 声学模型用于描述介质。 我们使用关于速度分布的开放源数据集来直接比较所提出的结果和先前的作品。 前方建模使用网格特征数字法进行。 反向问题则使用深相进化神经网络解决。 提议对基线UNet结构进行修改,以改进结构相似指数测量速度剖面与地面真理的定量对应。 我们评估我们的改进情况,并展示结果的统计意义。