This paper considers the problem of co-synthesis in $k$-player games over a finite graph where each player has an individual $\omega$-regular specification $\phi_i$. In this context, a secure equilibrium (SE) is a Nash equilibrium w.r.t. the lexicographically ordered objectives of each player to first satisfy their own specification, and second, to falsify other players' specifications. A winning secure equilibrium (WSE) is an SE strategy profile $(\pi_i)_{i\in[1;k]}$ that ensures the specification $\phi:=\bigwedge_{i\in[1;k]}\phi_i$ if no player deviates from their strategy $\pi_i$. Distributed implementations generated from a WSE make components act rationally by ensuring that a deviation from the WSE strategy profile is immediately punished by a retaliating strategy that makes the involved players lose. In this paper, we move from deviation punishment in WSE-based implementations to a distributed, assume-guarantee based realization of WSE. This shift is obtained by generalizing WSE from strategy profiles to specification profiles $(\varphi_i)_{i\in[1;k]}$ with $\bigwedge_{i\in[1;k]}\varphi_i = \phi$, which we call most general winning secure equilibria (GWSE). Such GWSE have the property that each player can individually pick a strategy $\pi_i$ winning for $\varphi_i$ (against all other players) and all resulting strategy profiles $(\pi_i)_{i\in[1;k]}$ are guaranteed to be a WSE. The obtained flexibility in players' strategy choices can be utilized for robustness and adaptability of local implementations. Concretely, our contribution is three-fold: (1) we formalize GWSE for $k$-player games over finite graphs, where each player has an $\omega$-regular specification $\phi_i$; (2) we devise an iterative semi-algorithm for GWSE synthesis in such games, and (3) obtain an exponential-time algorithm for GWSE synthesis with parity specifications $\phi_i$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月27日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
33+阅读 · 2022年12月20日
Arxiv
45+阅读 · 2022年9月19日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2024年2月27日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
33+阅读 · 2022年12月20日
Arxiv
45+阅读 · 2022年9月19日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员