The determinant lower bound of Lovasz, Spencer, and Vesztergombi [European Journal of Combinatorics, 1986] is a powerful general way to prove lower bounds on the hereditary discrepancy of a set system. In their paper, Lovasz, Spencer, and Vesztergombi asked if hereditary discrepancy can also be bounded from above by a function of the hereditary discrepancy. This was answered in the negative by Hoffman, and the largest known multiplicative gap between the two quantities for a set system of $m$ substes of a universe of size $n$ is on the order of $\max\{\log n, \sqrt{\log m}\}$. On the other hand, building on work of Matou\v{s}ek [Proceedings of the AMS, 2013], recently Jiang and Reis [SOSA, 2022] showed that this gap is always bounded up to constants by $\sqrt{\log(m)\log(n)}$. This is tight when $m$ is polynomial in $n$, but leaves open what happens for large $m$. We show that the bound of Jiang and Reis is tight for nearly the entire range of $m$. Our proof relies on a technique of amplifying discrepancy via taking Kronecker products, and on discrepancy lower bounds for a set system derived from the discrete Haar basis.


翻译:Lovasz、Spencer和Vesztergombi的决定因素下限(Lovasz、Spencer和Vesztergombi,1986年《欧洲组合体杂志》)是证明一个固定系统的遗传差异下限的有力通用途径。在他们的文章Lovasz、Spencer和Vesztergombi中,Lovas、Spencer和Vesztergombi询问遗传差异是否也可以与遗传差异的上限相联。Hoffman的回答是否定的,而对于一个规模为1美元(美元)的宇宙的一套系统,其最大数量之间已知的多倍增值差距是按美元(美元)和美元(美元)的离差值排列的顺序来计算的。另一方面,在他们的文章中,在Matou\v{v{sr@sek的作品上,最近江和Reis[SOS,2022]显示,这一差距总是由美元(m)=log(n)美元(美元)美元)美元(美元)美元(美元)的固定。当美元(美元)美元是混合美元(美元)美元)的混合美元(美元)的混合美元(sqrrrupl)的基(美元)值基础上)值的硬基(美元)值(美元)值的基)值的基的基将多少开始。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
3+阅读 · 2023年5月4日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员