Seismic tomography solves high-dimensional optimization problems to image subsurface structures of Earth. In this paper, we propose to use random batch methods to construct the gradient used for iterations in seismic tomography. Specifically, we use the frozen Gaussian approximation to compute seismic wave propagation, and then construct stochastic gradients by random batch methods. The method inherits the spirit of stochastic gradient descent methods for solving high-dimensional optimization problems. The proposed idea is general in the sense that it does not rely on the usage of the frozen Gaussian approximation, and one can replace it with any other efficient wave propagation solvers, e.g., Gaussian beam methods and spectral element methods. We prove the convergence of the random batch method in the mean-square sense, and show the numerical performance of the proposed method by two-dimensional and three-dimensional examples of wave-equation-based travel-time inversion and full-waveform inversion, respectively. As a byproduct, we also prove the convergence of the accelerated full-waveform inversion using dynamic mini-batches and spectral element methods.
翻译:地震断层法解决了地表下结构图像的高度优化问题。 在本文中, 我们提议使用随机批量方法构建地震断层中迭代所用的梯度。 具体地说, 我们使用冷冻高斯近似来计算地震波的传播, 然后通过随机批量方法构建随机切分梯度。 该方法继承了用于解决高维优化问题的随机切分梯度梯度下降方法的精神。 所拟议的理念是一般性的, 它不依赖于冷冻高斯近似值的使用, 并且可以用任何其他高效的波波传播溶解器来取代它, 例如高斯光谱法和光谱元元素方法。 我们用动态微型气压和光谱元素方法来证明随机分批法的趋同, 并用基于波积的双维和三维例子分别显示拟议方法的数值性能。 作为副产品, 我们还证明了加速的全波变组合组合, 使用动态微型气压和光谱元素方法。