We propose a novel theoretical framework of analysis for Generative Adversarial Networks (GANs). We reveal a fundamental flaw of previous analyses which, by incorrectly modeling GANs' training scheme, are subject to ill-defined discriminator gradients. We overcome this issue which impedes a principled study of GAN training, solving it within our framework by taking into account the discriminator's architecture. To this end, we leverage the theory of infinite-width neural networks for the discriminator via its Neural Tangent Kernel. We characterize the trained discriminator for a wide range of losses and establish general differentiability properties of the network. From this, we derive new insights about the convergence of the generated distribution, advancing our understanding of GANs' training dynamics. We empirically corroborate these results via an analysis toolkit based on our framework, unveiling intuitions that are consistent with GAN practice.
翻译:我们为创世反逆网络(GANs)提出了一个新的理论分析框架。我们揭示了以往分析的一个根本缺陷,这些分析错误地模拟了GANs的训练计划,因此受到定义不当的歧视梯度的影响。我们克服了这一问题,这个问题妨碍了对GAN培训进行有原则的研究,通过考虑歧视者的结构来解决了这一问题。为此,我们利用无限双神经网络理论,通过其Neural Tangent Kernel对歧视者进行分析。我们把经过训练的歧视问题定性为广泛的损失,并建立了网络的一般差异性能。我们从中获得了关于所产生分布的趋同的新见解,增进了我们对GANs培训动态的了解。我们通过基于我们框架的分析工具,通过揭示符合GAN实践的直觉,从经验上证实了这些结果。