Many multivariate data sets exhibit a form of positive dependence, which can either appear globally between all variables or only locally within particular subgroups. In models in multivariate extremes arising from threshold exceedances, a natural notion of positive dependence is the recently introduced extremal multivariate total positivity of order 2 ($ \text{EMTP}_2 $). While $ \text{EMTP}_2 $ has nice theoretical properties, it is by construction a global property and therefore not suitable for applications with only local positive dependence. We introduce extremal association as a weaker form of extremal positive dependence and show that it generalizes extremal tree models. This follows from a sufficient condition for extremal association, which for H\"usler--Reiss distributions permits a parametric description that we call the metric property. As the parameter of a H\"usler--Reiss distribution is a Euclidean distance matrix, the metric property relates to research in electric network theory and Euclidean geometry. We show that the metric property can be localized with respect to a graph and study surrogate likelihood inference. This gives rise to a two-step estimation procedure for locally metrical H\"usler--Reiss graphical models. The second step allows for a simple dual problem, which is implemented via a gradient descent algorithm. Finally, we demonstrate our results on simulated and real data.
翻译:许多多变量数据集展示了一种正依赖形式, 无论是在所有变量之间, 还是在特定子群中, 都可以在全球出现一种正依赖形式。 在由阈值超升率产生的多变量极端模型中, 一个自然的正依赖概念是最近引入的顺序 2 ($\\ text{ EMTP ⁇ 2$) 的极端多变量和共性。 虽然 $\ text{ EMTP ⁇ 2$ 具有良好的理论属性, 但它是通过构建一个全球属性, 因而不适合于仅具有本地正依赖性的应用。 我们引入了极性关联, 将其作为极性正依赖的一种较弱的形式, 并显示它会普遍化极端树型模型。 这是基于极端性关联的充足条件。 对于 H\\\\" usler- Reiss 分配来说, 允许一个称为“ 度属性” 的参数描述。 虽然 $\\\ usler- Reiss 分布的参数是一个 Eublistrate 矩阵, 但衡量属性与电网理论和 Euclideidean 几何有关的研究有关。 我们显示, 度属性可以通过图形和 缩图解图解图和图的缩缩化模型进行本地评估。