In this paper, we focus on the parametric inference based on the Tampered Random Variable (TRV) model for simple step-stress life testing (SSLT) using Type-II censored data. The baseline lifetime of the experimental units, under normal stress conditions, follows the Gumbel Type-II distribution with $\alpha$ and $\lambda$ being the shape and scale parameters, respectively. Maximum likelihood estimator (MLE) and Bayes estimator of the model parameters are derived based on Type-II censored samples. We obtain asymptotic intervals of the unknown parameters using the observed Fisher information matrix. Bayes estimators are obtained using Markov Chain Monte Carlo (MCMC) method under squared error loss and LINEX loss functions. We also construct highest posterior density (HPD) intervals of the unknown model parameters. Extensive simulation studies are performed to investigate the finite sample properties of the proposed estimators. Three different optimality criteria have been considered to determine the optimal censoring plans. Finally, the methods are illustrated with the analysis of two real data sets.


翻译:在本文中,我们侧重于基于坦佩雷随机变量(TRV)模型的参数推论,该模型用于使用二类审查数据进行简单的步管生命测试(SSLT),在正常压力条件下,实验单位的基准寿命遵循Gumbel Tymble-II的分布,其形状和比例参数分别为$/alpha$和$/lambda$。模型参数的最大可能性估计器和Bayes估计器是根据二类审查样品推算的。我们利用观察到的渔业信息矩阵获得未知参数的抽取间隔。Bayes估计器是在方位错误损失和LINEX损失功能下使用Markov链 Monte Carlo(MCMC)方法获得的。我们还建造了未知模型参数的最高后方密度间隔。我们进行了广泛的模拟研究,以调查拟议估计器的有限样本特性。我们考虑了三种不同的最佳标准来确定最佳检查计划。最后,用两种实际数据集的分析说明了方法。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员