We propose and study a new privacy definition, termed Probably Approximately Correct (PAC) Security. PAC security characterizes the information-theoretic hardness to recover sensitive data given arbitrary information disclosure/leakage during/after any processing. Unlike the classic cryptographic definition and Differential Privacy (DP), which consider the adversarial (input-independent) worst case, PAC security is a simulatable metric that quantifies the instance-based impossibility of inference. A fully automatic analysis and proof generation framework is proposed: security parameters can be produced with arbitrarily high confidence via Monte-Carlo simulation for any black-box data processing oracle. This appealing automation property enables analysis of complicated data processing, where the worst-case proof in the classic privacy regime could be loose or even intractable. Moreover, we show that the produced PAC security guarantees enjoy simple composition bounds and the automatic analysis framework can be implemented in an online fashion to analyze the composite PAC security loss even under correlated randomness. On the utility side, the magnitude of (necessary) perturbation required in PAC security is not lower bounded by $\Theta(\sqrt{d})$ for a $d$-dimensional release but could be O(1) for many practical data processing tasks, which is in contrast to the input-independent worst-case information-theoretic lower bound. Example applications of PAC security are included with comparisons to existing works.


翻译:我们提议并研究一个新的隐私定义,称为“可能最正确(PAC)安全 ” 。 PAC安全是信息理论硬性,以在任何处理过程中/处理后任意披露/泄漏信息时任意披露/泄漏信息,恢复敏感数据。 与传统的加密定义和差异隐私(DP)不同,后者认为对抗(独立)最差的对立(独立)最差情况,PAC安全是一种可模拟的衡量标准,它量化了无法以实例为基础的推推推推的可能性。 提出了完全自动的分析和证据生成框架:安全参数可以通过蒙特-卡罗模拟为任何黑盒数据处理或触黑箱数据处理或触雷器以任意的高度信心生成。这种上诉自动化属性使得能够分析复杂的数据处理,而传统的隐私制度最坏的证明可能是松散甚至棘手的。 此外,我们表明,产生的PAC安全(独立) 安全保证享有简单的构成约束,并且自动分析框架可以在线实施,以分析以实例为基础的无法测算,即使是在相关随机随机分析的情况下,综合PAC安全损失的综合PAC安全损失。 在效用方面,PAC安全需要(必要的)现有(最深)的(必要的)过深层安全程度,但PAC安全需要的(但最小的(最小的)的(最小的)范围范围范围不是受美元的约束,但由O(美元/西的)应用应用应用应用应用的A-最小的A-最低的A-最低的、最小的、最小的、最小的、最小的数据处理任务中,包括投入的A-最小的、最小的、最小的、最小的、最小的、最小的、最小的、最小的、最小的、最小的、最小的、最的、最小的、最小的、最小的、最小的、最的处理的处理的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最的、最

0
下载
关闭预览

相关内容

PAC学习理论不关心假设选择算法,他关心的是能否从假设空间H中学习一个好的假设h。此理论不关心怎样在假设空间中寻找好的假设,只关心能不能找得到。现在我们在来看一下什么叫“好假设”?只要满足两个条件(PAC辨识条件)即可
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年4月30日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月10日
Local Intrinsic Dimensional Entropy
Arxiv
0+阅读 · 2023年4月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年4月30日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员