In linear regression models, fusion of coefficients is used to identify predictors having similar relationships with a response. This is called variable fusion. This paper presents a novel variable fusion method in terms of Bayesian linear regression models. We focus on hierarchical Bayesian models based on a spike-and-slab prior approach. A spike-and-slab prior is tailored to perform variable fusion. To obtain estimates of the parameters, we develop a Gibbs sampler for the parameters. Simulation studies and a real data analysis show that our proposed method achieves better performance than previous methods.
翻译:在线性回归模型中,系数的聚合被用来确定与响应有类似关系的预测体。这称为可变聚合。本文介绍了一种新颖的巴伊西亚线性回归模型的可变聚合方法。我们侧重于基于前一个钉和板方法的贝ysian等级模型。前一个钉和板是专门设计用来进行可变聚合的。为了获得参数的估计,我们为参数开发了一个Gibbs取样器。模拟研究和一个真实的数据分析表明,我们拟议方法的性能优于以往方法。