Recurrent neural networks (RNNs) are powerful dynamical models, widely used in machine learning (ML) for processing sequential data, and in neuroscience, to understand the emergent properties of networks of real neurons. Prior theoretical work in understanding the properties of RNNs has focused on networks with additive interactions. However, gating -- i.e. multiplicative -- interactions are ubiquitous in real neurons, and gating is also the central feature of the best-performing RNNs in ML. Here, we study the consequences of gating for the dynamical behavior of RNNs. We show that gating leads to slow modes and a novel, marginally-stable state. The network in this marginally-stable state can function as a robust integrator, and unlike previous approaches, gating permits this function without parameter fine-tuning or special symmetries. We study the long-time behavior of the gated network using its Lyapunov spectrum, and provide a novel relation between the maximum Lyapunov exponent and the relaxation time of the dynamics. Gating is also shown to give rise to a novel, discontinuous transition to chaos, where the proliferation of critical points (topological complexity) is decoupled from the appearance of chaotic dynamics (dynamical complexity), in contrast to a seminal result for additive RNNs. The rich dynamical behavior is summarized in a phase diagram indicating critical surfaces and regions of marginal stability -- thus, providing a map for principled parameter choices to ML practitioners. Finally, we develop a field theory for gradients that arise in training, by combining the adjoint formalism from control theory with the dynamical mean-field theory. This paves the way for the use of powerful field theoretic techniques to study training and gradients in large RNNs.


翻译:经常神经网络( RNNNS) 是强大的动态模型, 广泛用于机器学习( ML) 处理连续数据, 以及神经科学, 以了解真实神经元网络的突发特性。 先前用于理解 RNNS 特性的理论工作侧重于具有添加性相互作用的网络。 然而, 光学 -- -- 即多复制性 -- -- 互动在真实神经元中是无处不在的, 光学也是ML中表现最佳的 RNNN 选择的核心特征。 在这里, 我们研究为 RNNS 动态行为定位( MML) 。 我们显示, 光学引导导致模式的缓慢, 以及新颖、 微不稳定状态状态。 这个微不稳定状态的网络可以发挥强大的融合作用, 与先前的方法不同, 显示这个功能没有参数的精确调整或特殊对等。 我们用 Lyapunov 研究频谱来研究 Gated网络的长期行为, 并且通过我们最富有的 Lyapunov 快速和较宽松的运行过程之间的新关系。 我们的Gateal- grealdealdeal deal strational strational deal strational strational lade lade lade lade lade lax lade lax lax lax lautal lax lax lax lax lax lautal lautd lautus lautus lautus lautus

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
53+阅读 · 2020年9月7日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
51+阅读 · 2020年8月25日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
专访 | Recurrent AI:呼叫系统的「变废为宝」
机器之心
11+阅读 · 2018年11月28日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Neural Networks and Denotation
Arxiv
0+阅读 · 2021年3月15日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
3+阅读 · 2018年10月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
专访 | Recurrent AI:呼叫系统的「变废为宝」
机器之心
11+阅读 · 2018年11月28日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Top
微信扫码咨询专知VIP会员