We propose a novel method for closed-form predictive distribution modeling with neural nets. In quantifying prediction uncertainty, we build on Evidential Deep Learning, which has been impactful as being both simple to implement and giving closed-form access to predictive uncertainty. We employ it to model aleatoric uncertainty and extend it to account also for epistemic uncertainty by converting it to a Bayesian Neural Net. While extending its uncertainty quantification capabilities, we maintain its analytically accessible predictive distribution model by performing progressive moment matching for the first time for approximate weight marginalization. The eventual model introduces a prohibitively large number of hyperparameters for stable training. We overcome this drawback by deriving a vacuous PAC bound that comprises the marginal likelihood of the predictor and a complexity penalty. We observe on regression, classification, and out-of-domain detection benchmarks that our method improves model fit and uncertainty quantification.


翻译:我们提出了一种以神经网进行封闭式预测分布模型的新颖方法。在量化预测不确定性时,我们以 " 证据深度学习 " 为基础,该方法既简单易行,又易于预测不确定性;我们使用它来模拟偏移不确定性,并通过将其转换成贝叶斯神经网,将它也用于认知性不确定性。在扩大其不确定性量化能力的同时,我们保持其分析上可及的预测分布模型,首次对大约体重边缘化进行渐进式比对。最终模型为稳定培训引入了数量惊人的大量超常参数。我们克服了这一缺陷,得出了由预测和复杂处罚的边缘可能性构成的真空PAC界限。我们观察了回归、分类和外部检测基准,我们的方法改进了模型和不确定性量化。

0
下载
关闭预览

相关内容

PAC学习理论不关心假设选择算法,他关心的是能否从假设空间H中学习一个好的假设h。此理论不关心怎样在假设空间中寻找好的假设,只关心能不能找得到。现在我们在来看一下什么叫“好假设”?只要满足两个条件(PAC辨识条件)即可
专知会员服务
44+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning to Importance Sample in Primary Sample Space
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
14+阅读 · 2020年12月17日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning to Importance Sample in Primary Sample Space
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Top
微信扫码咨询专知VIP会员