Much computer vision research has focused on natural images, but technical documents typically consist of abstract images, such as charts, drawings, diagrams, and schematics. How well do general web search engines discover abstract images? Recent advancements in computer vision and machine learning have led to the rise of reverse image search engines. Where conventional search engines accept a text query and return a set of document results, including images, a reverse image search accepts an image as a query and returns a set of images as results. This paper evaluates how well common reverse image search engines discover abstract images. We conducted an experiment leveraging images from Wikimedia Commons, a website known to be well indexed by Baidu, Bing, Google, and Yandex. We measure how difficult an image is to find again (retrievability), what percentage of images returned are relevant (precision), and the average number of results a visitor must review before finding the submitted image (mean reciprocal rank). When trying to discover the same image again among similar images, Yandex performs best. When searching for pages containing a specific image, Google and Yandex outperform the others when discovering photographs with precision scores ranging from 0.8191 to 0.8297, respectively. In both of these cases, Google and Yandex perform better with natural images than with abstract ones achieving a difference in retrievability as high as 54\% between images in these categories. These results affect anyone applying common web search engines to search for technical documents that use abstract images.
翻译:大量计算机视觉研究集中在自然图像上, 但技术文件通常包括抽象图像的抽象图像, 如图表、 绘图、 图表和图示。 一般网络搜索引擎发现抽象图像的情况如何? 计算机视觉和机器学习的最近进展导致反向图像搜索引擎的上升。 当常规搜索引擎接受文本查询并返回一套文件结果, 包括图像, 反向图像搜索接受图像作为查询, 并返回一组图像作为结果。 本文评估了普通反向图像搜索引擎发现抽象图像的好坏程度。 我们利用维基介质共享的图像进行了一项实验, 这个网站以Baidu、 Bing、 Google 和 Yandex 著称为精密索引。 我们测量图像再次找到( 可追溯性)的困难程度, 返回的图像的百分比( 精度) 以及访问者在找到所提交图像之前必须审查的平均结果数量( 平均级别 ) 。 当试图在类似图像中再次发现相同图像时, Yandex 将最佳表现。 当搜索含有特定图像的页面时, Google and Yandex ex ex 超越其他图像的页面的页面, 在搜索过程中, 在搜索中分别以 0.829 的图像中, 的正常图像中, 在搜索中, 将这些图像中, 将这些图像的图像的图像的图像的精确度分别以 以 以 0.819 进行更精确性进行更精确性进行更好的排序。