Text-based person search (TBPS) is of significant importance in intelligent surveillance, which aims to retrieve pedestrian images with high semantic relevance to a given text description. This retrieval task is characterized with both modal heterogeneity and fine-grained matching. To implement this task, one needs to extract multi-scale features from both image and text domains, and then perform the cross-modal alignment. However, most existing approaches only consider the alignment confined at their individual scales, e.g., an image-sentence or a region-phrase scale. Such a strategy adopts the presumable alignment in feature extraction, while overlooking the cross-scale alignment, e.g., image-phrase. In this paper, we present a transformer-based model to extract multi-scale representations, and perform Asymmetric Cross-Scale Alignment (ACSA) to precisely align the two modalities. Specifically, ACSA consists of a global-level alignment module and an asymmetric cross-attention module, where the former aligns an image and texts on a global scale, and the latter applies the cross-attention mechanism to dynamically align the cross-modal entities in region/image-phrase scales. Extensive experiments on two benchmark datasets CUHK-PEDES and RSTPReid demonstrate the effectiveness of our approach. Codes are available at \href{url}{https://github.com/mul-hjh/ACSA}.
翻译:以文字为基础的人搜索(TBPS)在智能监控中具有非常重要的意义,智能监控旨在检索与特定文本描述具有高度语义相关性的行人图像。这一检索任务的特点既有模式异质性,也有细微的匹配。为了执行这项任务,需要从图像和文本域中提取多尺度的特征,然后进行跨模式的对齐。然而,大多数现有方法仅考虑各自规模的对齐,如图像-感应或区域版级的对齐。这种战略在地貌提取中采用可推定的对齐,同时忽略跨尺度的对齐,例如图像语句。在本文件中,我们提出了一个基于变压器的模型,以提取多尺度的表达方式,并进行非对称跨尺度的跨尺度调整。具体地说,ACSA由全球级别对齐模块和不对称的交叉访问模块组成,前者对全球规模的图像和文本进行对齐,后者将跨定位机制用于动态的跨比例对准我们基准-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-区域-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-战略-