This paper reconsiders several results of historical and current importance to nonparametric estimation of the survival distribution for failure in the presence of right-censored observation times, demonstrating in particular how Volterra integral equations of the first kind help inter-connect the resulting estimators. The paper begins by considering Efron's self-consistency equation, introduced in a seminal 1967 Berkeley symposium paper. Novel insights provided in the current work include the observations that (i) the self-consistency equation leads directly to an anticipating Volterra integral equation of the first kind whose solution is given by a product-limit estimator for the censoring survival function; (ii) a definition used in this argument immediately establishes the familiar product-limit estimator for the failure survival function; (iii) the usual Volterra integral equation for the product-limit estimator of the failure survival function leads to an immediate and simple proof that it can be represented as an inverse probability of censoring weighted estimator (i.e., under appropriate conditions). Finally, we show that the resulting inverse probability of censoring weighted estimators, attributed to a highly influential 1992 paper of Robins and Rotnitzky, were implicitly introduced in Efron's 1967 paper in its development of the redistribution-to-the-right algorithm. All results developed herein allow for ties between failure and/or censored observations.
翻译:暂无翻译