This article proposes methods to model nonstationary temporal graph processes. This corresponds to modelling the observation of edge variables (relationships between objects) indicating interactions between pairs of nodes (or objects) exhibiting dependence (correlation) and evolution in time over interactions. This article thus blends (integer) time series models with flexible static network models to produce models of temporal graph data, and statistical fitting procedures for time-varying interaction data. We illustrate the power of our proposed fitting method by analysing a hospital contact network, and this shows the high dimensional data challenge of modelling and inferring correlation between a large number of variables.
翻译:本条提议了非静止时间图过程模型的方法。 这相当于对观测边缘变量(物体之间的关系)进行建模,显示显示成瘾(或对象)的对节点(或对象)之间的相互作用,并随着相互作用而逐渐演变。因此,本条将时间序列模型与灵活的静态网络模型混合起来(整数),以生成时间图数据模型,并用于时间变化互动数据的统计适当程序。我们通过分析医院联系网络来说明我们拟议的适当方法的力量,这显示了建模和推断大量变量之间相互关系的高度数据挑战。