With modern calcium imaging technology, activities of thousands of neurons can be recorded in vivo. These experiments can potentially provide new insights into intrinsic functional neuronal connectivity, defined as contemporaneous correlations between neuronal activities. As a common tool for estimating conditional dependencies in high-dimensional settings, graphical models are a natural choice for estimating functional connectivity networks. However, raw neuronal activity data presents a unique challenge: the relevant information in the data lies in rare extreme value observations that indicate neuronal firing, rather than in the observations near the mean. Existing graphical modeling techniques for extreme values rely on binning or thresholding observations, which may not be appropriate for calcium imaging data. In this paper, we develop a novel class of graphical models, called the Subbotin graphical model, which finds sparse conditional dependency structures with respect to the extreme value observations without requiring data pre-processing. We first derive the form of the Subbotin graphical model and show the conditions under which it is normalizable. We then study the empirical performance of the Subbotin graphical model and compare it to existing extreme value graphical modeling techniques and functional connectivity models from neuroscience through several simulation studies as well as a real-world calcium imaging data example.
翻译:使用现代钙成像技术,数千个神经神经元的活动可以在体内记录下来。这些实验有可能为内在功能性神经神经连接提供新的洞察力,即神经活动之间的同步关联。作为在高维环境中估计有条件依赖性的常见工具,图形模型是估算功能连通网络的自然选择。然而,原始神经活动数据是一个独特的挑战:数据中的相关信息存在于表明神经燃烧的稀有极端价值观测中,而不是在平均值附近的观测中。现有极端值的图形模型技术依赖于宾入或临界值观测,这对于钙成像数据可能不合适。在本文件中,我们开发了新型的图形模型模型,称为Subbotin图形模型,在不需要数据预处理的情况下,在极值观测方面发现缺乏有条件依赖性结构。我们首先从Subbotin图形模型中得出形式,并显示其正常化的条件。我们随后研究Subbotin图形模型的经验性表现,并将它与现有的极值建模技术和功能连通性模型进行对比,从神经科学中提取的功能性模型,作为真实的图像成像像。