Stroke remains a leading cause of death and disability worldwide, yet effective prediction of stroke risk using large-scale population data remains challenging due to data imbalance and high-dimensional features. In this study, we develop and evaluate regularized logistic regression models for stroke prediction using data from the 2022 Behavioral Risk Factor Surveillance System (BRFSS), comprising 445132 U.S. adult respondents and 328 health-related variables. To address data imbalance, we apply several resampling techniques including oversampling, undersampling, class weighting, and the Synthetic Minority Oversampling Technique (SMOTE). We further employ Lasso, Elastic Net, and Group Lasso regularization methods to perform feature selection and dimensionality reduction. Model performance is assessed using ROC-AUC, sensitivity, and specificity metrics. Among all methods, the Lasso-based model achieved the highest predictive performance (AUC = 0.761), while the Group Lasso method identified a compact set of key predictors: Age, Heart Disease, Physical Health, and Dental Health. These findings demonstrate the potential of regularized regression techniques for interpretable and efficient prediction of stroke risk from large-scale behavioral health data.
翻译:脑卒中仍是全球范围内导致死亡和残疾的主要原因,然而利用大规模人群数据有效预测脑卒中风险仍面临数据不平衡和高维特征的挑战。本研究基于2022年行为风险因素监测系统(BRFSS)数据,开发并评估了用于脑卒中预测的正则化逻辑回归模型,该数据集包含445,132名美国成年受访者及328个健康相关变量。为处理数据不平衡问题,我们应用了多种重采样技术,包括过采样、欠采样、类别加权以及合成少数类过采样技术(SMOTE)。进一步采用Lasso、弹性网络和组Lasso正则化方法进行特征选择与降维。通过ROC-AUC、敏感性和特异性指标评估模型性能。在所有方法中,基于Lasso的模型取得了最佳预测性能(AUC = 0.761),而组Lasso方法识别出一组紧凑的关键预测因子:年龄、心脏病、身体健康状况和口腔健康状况。这些发现证明了正则化回归技术从大规模行为健康数据中实现可解释且高效的脑卒中风险预测的潜力。