Few-shot class-incremental learning (FSCIL) aims at recognizing novel classes continually with limited novel class samples. A mainstream baseline for FSCIL is first to train the whole model in the base session, then freeze the feature extractor in the incremental sessions. Despite achieving high overall accuracy, most methods exhibit notably low accuracy for incremental classes. Some recent methods somewhat alleviate the accuracy imbalance between base and incremental classes by fine-tuning the feature extractor in the incremental sessions, but they further cause the accuracy imbalance between past and current incremental classes. In this paper, we study the causes of such classification accuracy imbalance for FSCIL, and abstract them into a unified model bias problem. Based on the analyses, we propose a novel method to mitigate model bias of the FSCIL problem during training and inference processes, which includes mapping ability stimulation, separately dual-feature classification, and self-optimizing classifiers. Extensive experiments on three widely-used FSCIL benchmark datasets show that our method significantly mitigates the model bias problem and achieves state-of-the-art performance.
翻译:暂无翻译