There has been significant recent progress in training differentially private (DP) models which achieve accuracy that approaches the best non-private models. These DP models are typically pretrained on large public datasets and then fine-tuned on downstream datasets that are (i) relatively large, and (ii) similar in distribution to the pretraining data. However, in many applications including personalization, it is crucial to perform well in the few-shot setting, as obtaining large amounts of labeled data may be problematic; and on images from a wide variety of domains for use in various specialist settings. To understand under which conditions few-shot DP can be effective, we perform an exhaustive set of experiments that reveals how the accuracy and vulnerability to attack of few-shot DP image classification models are affected as the number of shots per class, privacy level, model architecture, dataset, and subset of learnable parameters in the model vary. We show that to achieve DP accuracy on par with non-private models, the shots per class must be increased as the privacy level increases by as much as 32$\times$ for CIFAR-100 at $\epsilon=1$. We also find that few-shot non-private models are highly susceptible to membership inference attacks. DP provides clear mitigation against the attacks, but a small $\epsilon$ is required to effectively prevent them. Finally, we evaluate DP federated learning systems and establish state-of-the-art performance on the challenging FLAIR federated learning benchmark.


翻译:最近,在培训差别化私营(DP)模型方面取得了显著进展,这些模型的准确性接近最佳非私营模型,这些DP模型通常在大型公共数据集上预先培训,然后在下游数据集上进行微调,这些数据集:(一) 相对大,和(二) 与培训前数据的分发相似,但是,在许多应用中,包括个性化,在微小的场景中表现良好至关重要,因为获得大量贴标签数据可能存在问题;在各种专业环境中使用的各种领域图像的准确性也取得了显著进展。为了了解少发DP在哪些条件下是有效的,我们进行了一套详尽的实验,显示攻击少发DP图像分类模型的准确性和脆弱性如何受到影响,因为每类、隐私级别、模型架构、数据集以及模型中可学习的参数组合各异。我们表明,要达到与非私人模型相同的DP,每类的镜头必须增加32美元,因为隐私水平增加32美元,而CIFAR-100以美元计价=1美元,我们进行一系列的DA型攻击的精确度和易变式的FD-D-S-S-SAL-S-Servial slex slex slear slear slex slear slex slear slear slear slex des a des laction sal sal sal sal sal slegre sal slex a legy slection a leg to to to to fal leg to fal sal sal sal sal sal sal res)。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Differentially Private Synthetic Control
Arxiv
0+阅读 · 2023年3月24日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员