Backdoor attacks inject poisoned data into the training set, resulting in misclassification of the poisoned samples during model inference. Defending against such attacks is challenging, especially in real-world black-box settings where only model predictions are available. In this paper, we propose a novel backdoor defense framework that can effectively defend against various attacks through zero-shot image purification (ZIP). Our proposed framework can be applied to black-box models without requiring any internal information about the poisoned model or any prior knowledge of the clean/poisoned samples. Our defense framework involves a two-step process. First, we apply a linear transformation on the poisoned image to destroy the trigger pattern. Then, we use a pre-trained diffusion model to recover the missing semantic information removed by the transformation. In particular, we design a new reverse process using the transformed image to guide the generation of high-fidelity purified images, which can be applied in zero-shot settings. We evaluate our ZIP backdoor defense framework on multiple datasets with different kinds of attacks. Experimental results demonstrate the superiority of our ZIP framework compared to state-of-the-art backdoor defense baselines. We believe that our results will provide valuable insights for future defense methods for black-box models.


翻译:后门攻击会向训练集注入有毒数据,导致模型在推理期间对有毒样本进行误分类。在黑匣子实际应用情况下,仅有模型预测值可用,因此防御此类攻击是具有挑战性的。本文提出了一种新的后门防御框架,通过零样本图像净化 (ZIP),可以有效地防御各种攻击。我们的提议框架可以应用于黑盒子模型,而不需要任何有关受污染模型的内部信息或任何先前关于清洁/污染样本的知识。我们的防御框架包括两个步骤。首先,我们对受污染图像进行线性变换以破坏触发模式。然后,我们使用预训练的扩散模型来恢复由变换去除的缺失语义信息。特别的,我们使用转换后的图像来指导生成高保真净化图像的新逆过程,该过程可以在零样本情况下应用。我们在多个数据集上以不同种类的攻击方式评估我们的ZIP后门防御框架。实验结果表明,与现有的后门防御方法相比,我们的ZIP框架优势明显。我们相信,我们的结果将为未来黑盒子模型的防御方法提供有价值的洞见。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
百篇论文纵览大型语言模型最新研究进展
专知会员服务
68+阅读 · 2023年3月31日
CVPR2022 | 医学图像分析中基于频率注入的后门攻击
专知会员服务
3+阅读 · 2022年7月9日
【AAAI2022】自适应的随机平滑防御的鲁棒性认证方法
专知会员服务
24+阅读 · 2021年12月27日
【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
13+阅读 · 2021年1月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
CVPR 2021 论文盘点-人脸识别篇
CVer
2+阅读 · 2022年5月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月9日
Arxiv
14+阅读 · 2020年10月26日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员