We propose TD-GEN, a graph generation framework based on tree decomposition, and introduce a reduced upper bound on the maximum number of decisions needed for graph generation. The framework includes a permutation invariant tree generation model which forms the backbone of graph generation. Tree nodes are supernodes, each representing a cluster of nodes in the graph. Graph nodes and edges are incrementally generated inside the clusters by traversing the tree supernodes, respecting the structure of the tree decomposition, and following node sharing decisions between the clusters. Finally, we discuss the shortcomings of standard evaluation criteria based on statistical properties of the generated graphs as performance measures. We propose to compare the performance of models based on likelihood. Empirical results on a variety of standard graph generation datasets demonstrate the superior performance of our method.
翻译:我们提出了基于树分解的图表生成框架TD-GEN, 并引入了对图形生成所需最大决定数量限制的缩小上限。 框架包括构成图形生成主柱的变异树种生成模型。 树节点是顶点, 每个代表图中的一组节点。 图表节点和边缘通过在树超级节点中穿行、尊重树分解结构并在各组之间作出节点共享决定而逐步生成。 最后, 我们讨论了基于生成的图表的统计属性的标准评估标准的缺陷, 以此作为业绩计量。 我们提议根据可能性比较模型的性能。 各种标准图形生成数据集的经验显示我们方法的优异性。