The emergence of cloud computing provides a new computing paradigm for users---massive and complex computing tasks can be outsourced to cloud servers. However, the privacy issues also follow. Fully homomorphic encryption shows great potential in privacy-preserving computation, yet it is not ready for practice. At present, secure multiparty computation (MPC) remains the mainly approach to deal with sensitive data. In this paper, following the secret sharing based MPC paradigm, we propose a secure 2-party computation scheme, in which cloud servers can securely evaluate functions with high efficiency. We first propose the multiplicative secret sharing (MSS) based on typical additive secret sharing (ASS). Then, we design protocols to switch shared secret between MSS and ASS, based on which a series of protocols for comparison and nearly all of elementary functions are proposed. We prove that all the proposed protocols are Universally Composable secure in the honest-but-curious model. Finally, we will show the remarkble progress of our protocols on both communication efficiency and functionality completeness.


翻译:云计算(MPC)的出现为用户提供了一个新的计算模式 -- -- 大型和复杂的计算任务可以外包给云服务器。然而,隐私问题也随之而来。完全同质加密在保护隐私的计算中显示出巨大的潜力,但目前还没有准备好。目前,安全的多功能计算(MPC)仍然是处理敏感数据的主要方法。在本文中,根据基于秘密共享的多功能计算模式,我们提出了一个安全的双方计算方案,云服务器可以在其中以高效的方式安全地评估功能。我们首先提议基于典型的添加式秘密共享(ASS)的多复制性秘密共享(MSS ) 。 然后,我们设计协议,在MSS和ASS之间交换共同的秘密,在此基础上提出一系列比较协议和几乎所有基本功能。我们证明所有拟议的协议在诚实但有说服力的模型中都是可普遍组合的。最后,我们将展示我们协议在通信效率和功能完整性两方面的可言道进展。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员