We analyze the stability and functional superconvergence of discretizations of diffusion problems with the narrow-stencil second-derivative generalized summation-by-parts (SBP) operators coupled with simultaneous approximation terms (SATs). Provided that the primal and adjoint solutions are sufficiently smooth and the SBP-SAT discretization is primal and adjoint consistent, we show that linear functionals associated with the steady diffusion problem superconverge at a rate of $ 2p $ when a degree $ p+1 $ narrow-stencil or a degree $ p $ wide-stencil generalized SBP operator is used for the spatial discretization. Sufficient conditions for stability of adjoint consistent discretizations with the narrow-stencil generalized SBP operators are presented. The stability analysis assumes nullspace consistency of the second-derivative operator and the invertibility of the matrix approximating the first derivative at the element boundaries. The theoretical results are verified by numerical experiments with the one-dimensional Poisson problem.
翻译:如果原始和联合解决办法足够顺利,而SBP-SAT离散是原始和联合的,而且SBP-SAT离散是相互一致的,那么,我们就会发现,与稳定扩散问题相关的线性功能以2p美元的比率与稳定扩散问题超级凝聚相关的线性功能相联,在空间离散时,使用一定度的p+1美元(窄度)或某种度的p美元(宽度)普遍SBP操作员。 提出与窄度普遍SBP操作员保持一致的连续离散的足够条件。 稳定分析假定二分流操作员的空域一致性和在元素边界上将第一个衍生物置于基质上不可逆性。 理论结果通过单维Poisson问题的数字实验得到验证。