Consider a random vector $\mathbf{y}=\mathbf{\Sigma}^{1/2}\mathbf{x}$, where the $p$ elements of the vector $\mathbf{x}$ are i.i.d. real-valued random variables with zero mean and finite fourth moment, and $\mathbf{\Sigma}^{1/2}$ is a deterministic $p\times p$ matrix such that the spectral norm of the population correlation matrix $\mathbf{R}$ of $\mathbf{y}$ is uniformly bounded. In this paper, we find that the log determinant of the sample correlation matrix $\hat{\mathbf{R}}$ based on a sample of size $n$ from the distribution of $\mathbf{y}$ satisfies a CLT (central limit theorem) for $p/n\to \gamma\in (0, 1]$ and $p\leq n$. Explicit formulas for the asymptotic mean and variance are provided. In case the mean of $\mathbf{y}$ is unknown, we show that after recentering by the empirical mean the obtained CLT holds with a shift in the asymptotic mean. This result is of independent interest in both large dimensional random matrix theory and high-dimensional statistical literature of large sample correlation matrices for non-normal data. At last, the obtained findings are applied for testing of uncorrelatedness of $p$ random variables. Surprisingly, in the null case $\mathbf{R}=\mathbf{I}$, the test statistic becomes completely pivotal and the extensive simulations show that the obtained CLT also holds if the moments of order four do not exist at all, which conjectures a promising and robust test statistic for heavy-tailed high-dimensional data.


翻译:考虑一个随机矢量 $\ mathbf{y\\ mathbtrial{ mathbf{x} 美元, 其中矢量 $\ mathbf{ 1/2} 美元是 i.d. 实际估值随机变量, 零平均值和有限的第四秒为 美元; $\ mathbff=Sigma} 美元是一个确定性 $p\ time p 美元 基质, 这样, 人口关系矩阵的光谱标准 $\ mathbflitual} 1/2\\ mathbf{x} 美元是统一的 美元 。 在本文中, 直径 数 值 的直径 值 值 = 美元 。 直径 直径 直径 直径 直径 = 美元 美元 。 直径直径直的直方形公式不是 。 直径 直径直的直径直的直方位数 值 值 值 值 值 =

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
inpluslab
8+阅读 · 2019年10月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月25日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
inpluslab
8+阅读 · 2019年10月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员