Let $\mathbf{f} = \left(f_1, \dots, f_p\right) $ be a polynomial tuple in $\mathbb{Q}[z_1, \dots, z_n]$ and let $d = \max_{1 \leq i \leq p} \deg f_i$. We consider the problem of computing the set of asymptotic critical values of the polynomial mapping, with the assumption that this mapping is dominant, $\mathbf{f}: z \in \mathbb{K}^n \to (f\_1(z), \dots, f\_p(z)) \in \mathbb{K}^p$ where $\mathbb{K}$ is either $\mathbb{R}$ or $\mathbb{C}$. This is the set of values $c$ in the target space of $\mathbf{f}$ such that there exists a sequence of points $(\mathbf{x}_i)_{i\in \mathbb{N}}$ for which $\mathbf{f}(\mathbf{x}_i)$ tends to $c$ and $\|\mathbf{x}_i\| \kappa {\rm d} \mathbf{f}(\mathbf{x}_i))$ tends to $0$ when $i$ tends to infinity where ${\rm d} \mathbf{f}$ is the differential of $\mathbf{f}$ and $\kappa$ is a function measuring the distance of a linear operator to the set of singular linear operators from $\mathbb{K}^n$ to $\mathbb{K}^p$. Computing the union of the classical and asymptotic critical values allows one to put into practice generalisations of Ehresmann's fibration theorem. This leads to natural and efficient applications in polynomial optimisation and computational real algebraic geometry. Going back to previous works by Kurdyka, Orro and Simon, we design new algorithms to compute asymptotic critical values. Through randomisation, we introduce new geometric characterisations of asymptotic critical values. This allows us to dramatically reduce the complexity of computing such values to a cost that is essentially $O(d^{2n(p+1)})$ arithmetic operations in $\mathbb{Q}$. We also obtain tighter degree bounds on a hypersurface containing the asymptotic critical values, showing that the degree is at most $p^{n-p+1}(d-1)^{n-p}(d+1)^{p}$. Next, we show how to apply these algorithms to unconstrained polynomial optimisation problems and the problem of computing sample points per connected component of a semi-algebraic set defined by a single inequality/inequation. We report on the practical capabilities of our implementation of this algorithm. It shows how the practical efficiency surpasses the current state-of-the-art algorithms for computing asymptotic critical values by tackling examples that were previously out of reach.


翻译:Let\mathbf{f} = left( f_ 1, {dots, f_ pright) $[z_ 1,\dots, z_n] $, $d= max% 1\leq i\leqp} \ deg f_ 美元。 我们考虑的是计算多式映像的固定关键值的问题 。 假设此映像为主导, $\ mathb} r_ fr_ fr% fr} 美元 美元 : z\ mellemb} 局域=K} k=nrealb{dreb} 美元 局域=dhb} 局域=k_p] 局局域==bbbx美元 局域=美元=美元, 局域=美元=美元== 美元==xxx

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
39+阅读 · 2020年9月6日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Dimension-Free Empirical Entropy Estimation
Arxiv
0+阅读 · 2021年5月27日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
39+阅读 · 2020年9月6日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员