The present article is devoting a numerical approach for solving a fractional partial differential equation (FPDE) arising from electromagnetic waves in dielectric media (EMWDM). The truncated Bernoulli and Hermite wavelets series with unknown coefficients have been used to approximate the solution in both the temporal and spatial variables. The basic idea for discretizing the FPDE is wavelet approximation based on the Bernoulli and Hermite wavelets operational matrices of integration and differentiation. The resulted system of a linear algebraic equation has been solved by the collocation method. Moreover, convergence and error analysis have been discussed. Finally, several numerical experiments with different fractional-order derivatives have been provided and compared with the exact analytical solutions to illustrate the accuracy and efficiency of the method.


翻译:本文专门用数字方法解决电介质电磁波产生的部分偏差方程(PFDE),用时间和空间变数的近似解决办法,采用了计数法,分别使用Bernoulli和Hermite波子波子序列和未知系数。FPDE的基本想法是以Bernoulli和Hermite波子波子集成和分化操作矩阵为基础的波形近似值。结果的线性代数方程系统已通过合用法解决。此外,还讨论了趋同和误差分析。最后,提供了若干使用不同分序衍生物的数值实验,并与精确的分析解决办法进行了比较,以说明方法的准确性和效率。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月25日
VIP会员
相关资讯
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员