In this article, we consider colorable variations of the Unit Disk Cover ({\it UDC}) problem as follows. {\it $k$-Colorable Discrete Unit Disk Cover ({\it $k$-CDUDC})}: Given a set $P$ of $n$ points, and a set $D$ of $m$ unit disks (of radius=1), both lying in the plane, and a parameter $k$, the objective is to compute a set $D'\subseteq D$ such that every point in $P$ is covered by at least one disk in $D'$ and there exists a function $\chi:D'\rightarrow C$ that assigns colors to disks in $D'$ such that for any $d$ and $d'$ in $D'$ if $d\cap d'\neq\emptyset$, then $\chi(d)\neq\chi(d')$, where $C$ denotes a set containing $k$ distinct colors. For the {\it $k$-CDUDC} problem, our proposed algorithms approximate the number of colors used in the coloring if there exists a $k$-colorable cover. We first propose a 4-approximation algorithm in $O(m^{7k}n\log k)$ time for this problem, where $k$ is a positive integer. The previous best known result for the problem when $k=3$ is due to the recent work of Biedl et al. [CCCG 2019], who proposed a 2-approximation algorithm in $O(m^{25}n)$ time. For $k=3$, our algorithm runs in $O(m^{21}n)$ time, faster than the previous best algorithm, but gives a 4-approximate result. We then generalize our approach to yield a family of $\rho$-approximation algorithms in $O(m^{\alpha k}n\log k)$ time, where $(\rho,\alpha)\in \{(4, 7), (6,5), (7, 5), (9,4)\}$. We further generalize this to exhibit a $O(\frac{1}{\tau})$-approximation algorithm in $O(m^{\alpha k}n\log k)$ time for a given grid width $1 \leq \tau \leq 2$, where $\alpha=O(\tau^2)$. We also extend our algorithm to solve the {\it $k$-Colorable Line Segment Disk Cover ({\it $k$-CLSDC})} and {\it $k$-Colorable Rectangular Region Cover ({\it $k$-CRRC})} problems, in which instead of the set $P$ of $n$ points, we are given a set $S$ of $n$ line segments, and a rectangular region $\cal R$, respectively.


翻译:在此文章中, 我们考虑单位磁盘封面( =1) 问题的可颜色变数如下。 美元 美元 美元 4 美元 美元 4 美元 美元 美元 4 美元 美元 4 美元 4 美元 4 美元 3 美元 3 美元 3 美元 3 美元 4 美元 : 如果设定了1美元 美元 美元 美元 4 美元 美元, 美元 美元 3 美元 3 美元 3 美元 4 美元, 目标是计算一个设定 $ 25 美元 23 美元 美元 美元, 美元 美元 美元 4 美元 美元 美元 3 美元 3 美元 美元 美元 : 美元 美元 3 美元 3 美元 美元 = 美元 美元 : 美元 5 美元 美元 美元 美元 美元 5 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 数 数 美元 。 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元

0
下载
关闭预览

相关内容

【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月25日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Top
微信扫码咨询专知VIP会员