Although existing monocular depth estimation methods have made great progress, predicting an accurate absolute depth map from a single image is still challenging due to the limited modeling capacity of networks and the scale ambiguity issue. In this paper, we introduce a fully Visual Attention-based Depth (VADepth) network, where spatial attention and channel attention are applied to all stages. By continuously extracting the dependencies of features along the spatial and channel dimensions over a long distance, VADepth network can effectively preserve important details and suppress interfering features to better perceive the scene structure for more accurate depth estimates. In addition, we utilize geometric priors to form scale constraints for scale-aware model training. Specifically, we construct a novel scale-aware loss using the distance between the camera and a plane fitted by the ground points corresponding to the pixels of the rectangular area in the bottom middle of the image. Experimental results on the KITTI dataset show that this architecture achieves the state-of-the-art performance and our method can directly output absolute depth without post-processing. Moreover, our experiments on the SeasonDepth dataset also demonstrate the robustness of our model to multiple unseen environments.


翻译:尽管现有的单层深度估计方法取得了很大进展,但预测单一图像的准确绝对深度地图仍然具有挑战性,因为网络模型能力有限,而且规模模糊问题。在本文中,我们引入了完全视觉关注深度(VADepth)网络,将空间关注和引导关注应用到各个阶段。通过在长距离内不断提取空间和频道维度各特征的依存性,VADepth网络可以有效地保存重要细节,抑制干扰性特征,以便更好地了解场景结构,以便进行更准确的深度估计。此外,我们利用几何前线来形成规模测量模型培训的限制。具体地说,我们利用相机与图像中下方矩形区域平面相匹配的地面点之间的距离,构建了一个新的比例测量损失。 KITTI 数据集的实验结果显示,这一结构实现了最先进的性能,我们的方法可以直接输出绝对深度,而无需后处理。此外,我们在Seard Dept数据设置上进行的实验还表明,我们模型的坚固度也表明我们模型对于多种看不见环境的坚固性。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年6月12日
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月10日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员