Mixture distributions with dynamic weights are an efficient way of modeling loss data characterized by heavy tails. However, maximum likelihood estimation of this family of models is difficult, mostly because of the need to evaluate numerically an intractable normalizing constant. In such a setup, simulation-based estimation methods are an appealing alternative. We employ the approximate maximum likelihood estimation (AMLE) approach, which is general and can be applied to mixtures with any component densities, as long as simulation is feasible. We focus on the dynamic lognormal-generalized Pareto distribution, and use the Cram\'er - von Mises distance to measure the discrepancy between observed and simulated samples. After deriving the theoretical properties of the estimators, we develop a hybrid procedure, where standard maximum likelihood is first employed to determine the bounds of the uniform priors required as input for AMLE. Simulation experiments and two real-data applications suggest that this approach yields a major improvement with respect to standard maximum likelihood estimation.
翻译:具有动态重量的混合分布是模拟以重尾巴为特征的损失数据的一种有效方法。然而,这一组模型的最大可能性估计是困难的,主要是因为需要从数字上评估一个难以实现正常化的常数。在这种设置中,模拟估算方法是一个有吸引力的替代办法。我们采用了大致最大可能性估计方法,这种方法是一般性的,只要模拟可行,即可适用于具有任何成分密度的混合物。我们侧重于动态对数一般的帕雷托分布,并使用Cram\'er-von Misses距离来衡量所观测到的样品与模拟样品之间的差异。在得出估计器的理论特性后,我们开发了一个混合程序,首先使用标准最大可能性来确定需要作为 MELE 输入的制服前身的界限。模拟实验和两个真实数据应用显示,这一方法在标准最大可能性估计方面大有改进。