We present an error analysis of weak convergence of one-step numerical schemes for stochastic differential equations (SDEs) with super-linearly growing coefficients. Following Milstein's weak error analysis on the one-step approximation of SDEs, we prove a general conclusion on weak convergence of the one-step discretization of the SDEs mentioned above. As applications, we show the weak convergence rates for several numerical schemes of half-order strong convergence, such as tamed and balanced schemes. Numerical examples are presented to verify our theoretical analysis.
翻译:我们提出了一种针对具有超线性增长系数的随机微分方程(SDE)的一步数值方案的弱收敛误差分析。在Milstein的对SDE一步近似的弱误差分析的基础上,我们证明了上述 SDE 单步离散化的弱收敛的一般结论。作为应用,我们展示了半阶强收敛,如驯服和平衡方案的数值方案的弱收敛速率。为了验证我们的理论分析,我们提供了数值例子。